Eine Kooperation am Produktionstechnischen Zentrum der Leibniz Universität Hannover (kurz PZH) arbeitet derzeit an den Möglichkeiten, die einem beim additiven Schweißen mit Wire Arc Additive Manufactturing (WAAM), auch als Lichtbogendrahtauftragsschweißen bekannt, offenstehen. Bis Jahresende soll der Prototyp eines WAAM-Roboters fertig sein. Außerdem stellt sich die Frage, ob eben dieser auch ein guter CNC-Ersatz wäre.
Durch Wire Arc Additive Manufacturing (WAAM – Lichtbogendrahtauftragsschweißen) kann die am Produktionstechnischen Zentrum der Leibniz Universität Hannover (PZH) umgesetzte Roboterschweißzelle komplette Bauteile aus Stahl und Aluminium per 3D-Druck herstellen. Im Vergleich zu anderen Methoden wie dem Selektiven Laserschmelzen können mit WAAM größere Komponenten schnell mit einem Materialauftrag mit dem aufgeschmolzenen Schweißdraht additiv aufgebaut werden.
Vorteile des Wire Arc Additive Manufacturing (WAAM)
Dank der Technologie des Wire Arc Additive Manufacturing ist man in der Lage, schon existierende Rohlinge und Halbzeuge als Grundlage zu nutzen. Es ist von Vorteil, dass man nicht das komplette Bauteil additiv fertigen muss. Laut einer Pressemitteilung der Universität Hannover entstand die Roboterschweißzelle in Zusammenarbeit zwischen der Tewiss Technik und Wissen GmbH und des Instituts für Fertigungstechnik und Werkzeugmaschinen (IFW). Beheimatet sind beide Einrichtungen am Produktionstechnischen Zentrum (PZH) der Leibniz Universität Hannover.

Günstiger in der Anschaffung
Projektziel ist die Prozesskette des klassischen Zerspanens mit den Vorteilen der additiven Fertigung zu verbinden. Das WAAM-Verfahren vereint drei wirtschaftliche Pluspunkte in sich. Das System ist günstiger in der Anschaffung, eine komplexe Infrastruktur für die Pulver ist nicht erforderlich und der Prozess ist skalierbar.
Auf diese Weise sind auch große Bauräume und entsprechende Komponenten mit großen Abmessungen realisierbar. Das Verfahren und die Roboterschweißzelle sind jeweils neu.
Prototyp eines Zerspanungsroboters bis Ende 2018 geplant
Ein Zerspanungsroboter wird bis Ende 2018 prototypisch die Ergebnisse der bisherigen simulationsgestützten Forschung sowohl praktisch realisieren als auch bestätigen. Die Steifigkeit wird zirka zehn mal höher sein als bei traditionellen Industrierobotern, weshalb er für zahlreiche Anwendungen tatsächlich eine günstige Alternative für die Spanbearbeitung bedeutet.
