Bei der additiven Fertigung, die auch als 3D-Druck bezeichnet wird, unterscheidet man zwischen verschiedenen Technologien und Verfahren. Während in privaten Haushalten meist Geräte vorhanden sind, die mit der FDM- oder FFF-Extrusion arbeiten, kommen in Unternehmen oft SLS, Selective Laser Melting oder EBM, Material Jetting und Binder Jetting Verfahren zum Einsatz. Was sich hinter diesen ganzen Abkürzungen verbirgt und wie die Verfahren arbeiten, das soll Ihnen der nachfolgende Beitrag näherbringen.

Tabellarische Übersicht

VerfahrenAbkürzungTechnikEigenschaftenVorteileUnternehmen
Fused Deposition ModelingFDMExtrusion- für Desktop 3D-Drucker nutzbar
- für den Hausgebrauch
- einfache Funktionsweise
- breite Auswahl an Filamenten
- Filamente leicht verfügbar
- Druckmaterialien vergleichsweise günstig
- Von Stratasys entwickeltes und als Marke (Tradeemark) eingetragenes Verfahren
Fused Filament FabricationFFFExtrusion- für Desktop 3D-Drucker nutzbar
- einfache Funktionsweise
- für den Hausgebrauch
- einige exotischere Filamentzusammensetzungen (mit Metall, Mineralien etc.) verwendbar- Ohne Markenrechte, unternehmensunabhängig
Directed Energy DepositionDEDExtrusion- Einsatz in der Industrie
- Düse bewegt sich in mehrere Richtungen
- Elektronen- oder Laserstrahl schmilzt das Material
- Polymere, Keramiken, Metallpulver und Metalldrähte verarbeitbar
- Für Instandsetzungsmaßnahmen geeignet
StereolithographieSLAExtrusion- Arbeitet mit Photopolymerharz
- Nutzt UV-Licht und Laserstrahl
- Harz wird Schicht für Schicht gedruckt und zugleich ausgehärtet
- Zur Herstellung von Gussformen verwendbar
- Sehr detaillierte Druckergebnisse
Digital Light ProcessingDLPPhotopolymerisation- Arbeitet mit Harz
- Digitaler Lichtprozessor bzw. -projektor als UV-Lichtquelle
- Zur Herstellung von Gussformen nutzbar - Größere Druckgeschwindigkeit als bei den meisten herkömmlichen 3D-Druckern
Selectives Laser SintingSLSPowder Bed Fusion- Metall 3D-Druckverfahren
- Industrieller Einsatz
-Arbeitet mit Laser
- nutzt verschiedene Pulver in unterschiedlichen Zusammensetzungen
- Material wird gesintert
- Sehr effektiver Materialeinsatz
- Verschiedenste Materialzusammensetzungen möglich
- Breites Einsatzgebiet
- Großer Bauraum
Selectives Laser MeltingkeinePowder Bed Fusion- Ähnliche Eigenschaften wie SLS
- Einsatz eines Elektronenstrahls
- Verarbeitet verschiedenste Metalllegierungen
- Effektiver Materialeinsatz
- Häufige Verwendung in der Luft- und Raumfahrtindustrie, aber auch Medizin, Automobilindustrie, usw.
- Insgesamt breites Einsatzgebiet
- 3D-Drucker oft mit großem Bauraum
Laser SinternLSPowder Bed Fusion- Einsatz eines Lasers
- Schichtweiser Auftrag aufgeschmolzenen Pulvers
- verschiedenste Pulver verwendbar
- Ideal für Prototypenherstellung und Produktserien
- Herstellung eines Gießwerkzeugs entfällt
Laser MeltingLMPowder Bed Fusion- Laser schmilzt Metallpulver selektiv
- Zu druckendes Objekt wird schichtweise im Pulverbett aufgebaut
- Hohe Dichte des verarbeiteten Metalls
- Nachbearbeitung wie bei Schweißteilen möglich
- Zahlreiche Pulver einsetzbar
- Zur Fertigung von Prototypen, Kleinserien und Werkzeugen geeignet
Selective Heat SinteringSHSPowder Bed Fusion- Einsatz eines Thermodruckkopfes
- Schichtweise Auftragung des Pulvers durch eine Walze
- Verwendung von Kunststoffpulvern
- Arbeitet ähnlich wie das Laser Sintern
- Für Prototypen und Kleinserien geeignet, meistens für Konzeptbewertungen und Funktionsprüfungen eingesetzt
Direct Metal Laser SinteringDMLSPowder Bed Fusion- Englisches Synonym für Laser Melting (LM)/ Laser-schmelzen - Verwendung von Metallpulvern- Sowohl für Prototypen als auch für Kleinserien und Funktionstests geeignet- Verwendung in 3D-Druckern von SLM Solutions und EOS
Photopolymer JettingMaterial Jetting / MultiJet Modeling- Verwendung von flüssigem lichtempfindlichen Photopolymer
- UV-Lampe härtet Material aus
- Einsatz von Tintenstrahlköpfen
- Industrieller Einsatz
- Verschiedene Materialien gleich-zeitig einsetzbar
- Detailgenaue Drucke und Oberflächenveredlungenmöglich
- 3D-Drucker mit großem Bauvolumen möglich
PP (3D-Druck auf Gipsbasis / Plaster-based 3D Printing)Powder Bed Fusion- Arbeitet auf Gipsbasis
- Verwendet Tintenstrahlköpfe, die 2D-Tintenstrahldruckerköpfen ähneln
- Vollfarbdrucke sind möglich
- Gips ist ein sehr grobes Material und benötigt ein Bindemittel
Binder Jetting / Full Color 3D-Printing / Inkjet Powder Prin-tingMaterial Jetting / MultiJet Modeling- Flüssiges Bindemittel auf pulver-förmiges Material gestrahlt
- Pulverkörner werden zu gewünschtem Objekt verbunden
- Einsatz unter anderem in Vollfarb-3D-Druckern
Sheet Lamination / Laminated Objekt ManufacturingLaminierung- Einsatz dünnschichtiger Materialien wie beispielsweise Metallfolien, Kunststofffolien, Papier
- Verwendung von Lasern oder scharfen Klingen
- Folien werden in die 3D-Form geschnitten
- Einsatz verschiedenster Folien möglich
- Fertigung sehr dünner Objekte mit
- unterschiedlichen Eigenschaften
Bioprinting / 3D-Bioprinting / BiodruckNutzung biologisch abbaubarer Materialien/ organischer Substanzen- 3D-Druck mit speziell hergestellter „Biotinte“, also Tinte aus organischen Substanzen
- Zellen bzw. Zellaggregate werden in 3D-Biostruktur gegeben
- Einsatz eines Perfusionsreaktors
- Herstellung menschlichen Knochenmaterials und anderer Gewebestrukturen
- Nutzung für die medizinische Forschung
- Einsatz in der Kosmetikindustrie (beispielsweise zur Herstellung von Haut für Produkttests)
3D-Druck von Lebensmitteln / Lebensmitteldruck / Foodprinting3D Food PrintingExtrusion- Verschiedenste Lebensmittel können gedruckt werden
- Teile des 3D-Druckers, die mit Lebensmittel in Kontakt kommen, können problemlos gereinigt werden
- Vielfältige Einsatzorte (Confiserien, Konditoreien, Altenheime, private Haushalte etc.)
- Pürierte Lebensmittel können ansprechend präsentiert werden
- Individuelle Fertigung von Lebensmitteln möglich (beispielsweise Gummibärchen, Schokolade etc.).
Continuous Liquid Interface Produc-tionCLIPPhotopolymerisation- Projektor verschmilzt mit UV-Licht das Material zu fester Substanz.
- Setzt auf chemische Prozesse und eine exakte Mengenangabe.
- Nutzt Sauerstoff, damit die Strukturen nicht zu schnell verhärten.
- Arbeitet nach Hersteller-angaben deutlich schneller als andere SLA-3D-Drucker.
- In verschiedensten Industriezweigen einsetzbar (u.a. Automobilbau, medizinische Geräte, Herstellung von Server-klammern).
Ein vom 3D-Drucker-Hersteller Carbon entwickeltes 3D-Druckverfahren (mehr Infos).
Thermal Masking TechnologyPhotopolymerisation- Einsatz eines Thermodruckkopfes
- Dreiteilige Beschichtung der Glasdruckplatte
- Verwendung von SLA-Harzen
- Detailgetreue Darstellung
- Niedriger Anschaffungspreis
- Nach Herstellerangaben für Einsteiger gut geeignet
Entwickelt von ILIOS.
Light Initiated Fabrication TechnologyLIFTPhotopolymerisation- Nutzt verschiedene Schlüsselfaktoren-/technologien
- Einsatz speziell entwickelter SLA-Harze
- Druckt hochvisköse und füllbare Materialien
- Hersteller verspricht große Zeit- und Kostenersparnis
- Im medizinischen und industriellen Sektor ein-setzbar
- Aushärtungszeit wird Schicht für Schicht automatisch berechnet
Das 3D-Druckverfahren LIFT wurde von der coobx AG entwickelt und wird von EXIGO 3D-Druckern eingesetzt.

3D-Druckverfahren im Detail

Electron Beam Melting (EBM)

Auf dem gleichen Fundament wie das Selektive Laserschmelzen basiert auch das Electron Beam Melting (EBM) 3D-Druckverfahren. Ins Deutsche übertragen spricht man hier vom Elektronenstrahl-Schmelzen. Bei dieser Technologie wird ein pulverförmiges Material – in der Regel handelt es sich um Metall oder Legierungen – durch den Einsatz eines Elektronenstrahls zu dem gewünschten 3D-Objekt verfestigt.

» Details zum Electron Beam Melting (EBM)

Selectives Laser Melting (Selektives Laserschmelzen)

Für das Selective Laser Melting (Selektives Laserschmelzen) wird ein Prozess genutzt, der mit der SLS-3D-Drucktechnologie vergleichbar ist. Allerdings wird beim selektiven Laserschmelzen das pulverförmige Material nicht gesintert, sondern geschmolzen. Dafür kommt ein Hochleistungslaser zum Einsatz, der die Pulverkörnchen miteinander verschmilzt.

Genutzt wird dieses 3D-Druckverfahren meist bei er direkten Fertigung von Metallteilen für industrielle Endverbraucher wie beispielsweise die Luft– und Raumfahrttechnik und die medizinische Industrie.  Zahnärzte nutzen beispielsweise Dental Selective Laser Melting-3D-Drucker zur additiven Fertigung von Kronen und Implantaten.

» Details zum Selectives Laser Melting (Selektives Laserschmelzen)

Selectives Laser Sintering (SLS)

Bei dem SLS-3D-Druckverfahren wird pulverförmiges Material mit einem Laserstrahl gesintert. Dabei verbindet die vom Laser ausgestoßene Energie die winzigen Körner des Pulvers zu einer festen Struktur. Als Material kommen unter anderem Kunststoff-, Metall- und Keramikpulver zum Einsatz. Die SLS-3D-Drucker nutzen ein Druckbett voller Pulvermaterial. Die 3D-Druck-Software überwacht den Laser, der widerum das Muster des 3D-Designs aufzeichnet und schichtweise das endgültige Objekt anfertigt. Nach jeder Schicht wird auf der Z-Achse das Druckbett etwas herabgesenkt und dann die nächste Schicht passgenau auf der vorherigen platziert.

» Details zum Selectives Laser Sintering (SLS)

Powder Bed Fusion

Bei der Powder Bed Fusion (Pulverbettfusion) unterscheidet man zwischen der SLS– und der EBM-Technologie, sowie dem Selective Laser Melting-Verfahren. Hier werden Pulvermaterialien verarbeitet, so unter anderem Metallpulver verschiedener Zusammensetzungen. Zu den wichtigsten Arten der Powder Bed Fusion gehören die SLS- und die Selective Laser Melting-Technologie. Diese Verfahren werden für den 3D-Metalldruck in unterschiedlichen industriellen Bereichen eingesetzt.

» Details zum Powder Bed Fusion

Digital Light Processing (DLP)

Bei der Digitalen Lichtverarbeitung (Digital Light Processing, DLP) handelt es sich um eine weitere 3D-Druck-Technologie, die auf Harzbasis arbeitet. Sie wird von DLP-3D-Druckern verwendet. Hier entsteht das Objekt durch einen digitalen Lichtprozessor, der als UV-Lichtquelle dient, und photoreaktives Harz verfestigt. Bei dem im 3D-Drucker verbauten Projektor kann es sich beispielsweise um einen Videoprojektor handeln, dessen Auflösung auch die 3D-Druck-Auflösung bestimmt. Durch den Lichtprojektor ist die Druckgeschwindigkeit der DLP-3D-Drucker meist höher als bei anderen 3D-Druck Verfahren. Der Lichtprojektor härtet das Harz hier Schicht für Schicht aus.

» Details zum Digital Light Processing (DLP)

Stereolithographie (SLA)

Bei der Stereolithographie (SLA) kommen SLA-3D-Drucker zum Einsatz. Hier wird ein ultraviolettes Licht (UV-Licht) über einen Laserstrahl projiziert, um damit Harz zu verfestigen, das in einem Tank enthalten ist. Das geplante Objekt wird Schicht für Schicht hergestellt. In den Tanks von SLA-3D-Druckern befindet sich lichthärtendes flüssiges Photopolymerharz. Im Harztank selbst zeichnet der UV-Laserstrahl die gewünschte Form des zu fertigenden Objektes nach und verfestigt es im gleichen Zug sowohl Punkt für Punkt.

» Details zum Stereolithographie (SLA)

Photopolymerisation / 3D-Druck mit Harz

Bei der Photopolymerisation greift man hauptsächlich auf die SLA- und DLP-Technologie zurück.

Für den 3D-Druck mit Harz greift man auf die SLA und DLP Technologie zurück, die auf dem Photopolymerisationsprozess basieren. Dazu sind diese speziellen 3D-Drucker mit einem Tank und einer Lichtquell – beispielsweise einem Laser oder einem Projektor – ausgestattet. Das im Tank enthaltene flüssige Harz wird von der Lichtquelle Schicht für Schicht zu einem Objekt ausgehärtet. Dazu wird eine Schale, die als Bauplattform dienst, oberflächennah in einen Flüssigharzbehälter eingetaucht. Das zu fertigende Objekt wird Schicht für Schicht (DLP) oder Punkt für Punkt (SLA) aus dem Tank herausgehoben und getrocknet. Dabei kommt es zu einer Emittierung des Lichts, welches dafür sorgt, dass das Material aushärtet. Sobald eine Schicht fertiggestellt ist, wird die Schale wiederum etwas tiefer in den Tank getaucht. Dieser Prozess wird solange wiederholt, bis sämtliche Schichten gedruckt wurden und miteinander verschmolzen sind.

Bei den Harzen, die für den 3D-Druck in DLP- oder SLA-3D-Druckern Verwendung finden, handelt es sich um lichtempfindliche Photopolymere, also Fotoharze. Diese Verfestigen sich durch die Einwirkung bestimmter Lichtstrahlen.

Verwendet werden die SLA- und DLP-3D-Drucker für Objekte, die eine besonders hohe Detailgenauigkeit besitzen sollen und zugleich eine glatte Oberfläche erforderlich machen. So kommen DLP- und SLA-3D-Drucker hauptsächlich bei der Fertigung von Gussformen zum Einsatz, wozu beispielsweise kleine Schmuckstücke, aber auch Zahnersatz oder andere dentale Anwendungen gehören können.

» Details zum Photopolymerisation / 3D-Druck mit Harz

Directed Energy Deposition (DED)

Bei der Directed Energy Deposition (DED) Verfahren handelt es sich um eine fortschrittliche 3D-Druck Technologie, die in der Industrie genutzt wird. Da die Verarbeitung ähnlich erfolgt wie beim FFF beziehungsweise FDM Verfahren, kann auch die DED Technologie zur Extrusion dazugezählt werden.  Hier wird das Druckmaterial in Richtung einer Energiequelle wie beispielsweise Laser oder Elektronenstrahl befördert, sodann geschmolzen und dann wiederum Schicht für Schicht zu einem 3D-gedruckten Objekt verschmolzen.

Bei den meisten DED-3D-Druckern ist eine Düse auf einem Mehrachsarm, der aus bis zu fünf Achsen bestehen kann, montiert. Das geschmolzene Material wird durch die Düse auf die Oberfläche übertragen und erstarrt dort. Im Gegensatz zu den anderen Extrusionsverfahren kann sich die Düse in mehrere Richtungen bewegen, da sie nicht auf einer einzelnen Achse befestigt ist. Bei seiner Ausscheidung wird das Druckmaterial von einem Elektronen- oder Laserstrahl geschmolzen.  Als Druckmaterial können sowohl Polymere, Keramiken, Metallpulver und Metalldrähte verwendet werden. Oft greift man auf die Directed Energy Deposition zurück, um bereits vorhandene Teile oder Komponenten instandzusetzen oder sie mit einem weiteren Material zu versehen.

» Details zum Directed Energy Deposition (DED)

FDM- und FFF-Verfahren

Die Extrusion ist die am häufigsten eingesetzte 3D-Druck-Technik, die von Desktop-3D-Druckern genutzt wird. Sie wird sowohl als Fused Deposition Modeling (FDM) und auch als Fused Filament Fabrication (FFF) bezeichnet. Bei der Extrusion werden Kunststofffilamente – zum Beispiel ABS, PLA und PETG – im Druckkopf bzw. Extruder erhitzt und geschmolzen. Der 3D-Druckkopf ist auf zwei horizontalen Achsen, genauer gesagt der X- und der Y-Achse, positioniert und bewegt sich an diesen entlang. Das Druckbett, welches als Ablage dient, bewegt sich vertikal auf der Z-Achse.

Aus dem Extruder wird das geschmolzene Material schichtweise übereinander abgelegt, verbindet sich mit den nächsten Schichten und härtet aus. Sobald eine Schicht fertiggestellt ist, senkt sich das Druckbett mit der Z-Achse etwas herunter und der Prozess beginnt von vorn. Dies geht so lange weiter, bis das gewünschte Objekt oder Bauteil fertiggestellt ist. Wie genau das Objekt gedruckt wird, hängt vom gewählten Filament und dessen Qualität, aber auch von der Mindestschichtdicke des 3D-Druckers ab. Grundsätzlich lässt sich feststellen, dass je dünner die Schichten ausfallen, umso größer ist die Druckgenauigkeit respektive die Druckauflösung.

Zu den 3D-Druck-Filamenten, die mit fast allen Desktop 3D-Druckern kompatibel sind, gehören unter anderem PLA und ABS. FFF 3D-Drucker können auch einige exotische Kunststofffilamente verarbeiten, denen beispielsweise Anteile von Metall, Holz oder eines anderen Materials hinzugefügt wurden. Ein Großteil der Desktop-3D-Drucker nutzen das FFF Verfahren.

» Details zum FDM- und FFF-Verfahren

Extrusionsverfahren/ Extrusion

Besonders in privaten Haushalten, aber auch in Ingenieur- und Architektenbüros greift man für die Anfertigung einzelner Objekte gern auf Desktop-3D-Drucker zurück, die eines der Extrusionsverfahren nutzen. Zu diesen gehören das Fused Deposition Modeling (FDM) beziehungsweise die Fused Filament Fabrication (FFF), im weitesten Sinne aber auch die Directed Energy Deposition (DED).

» Details zum Extrusionsverfahren/ Extrusion

Alle 3D-Drucker-News per E-Mail:

Zur Newsletter-Anmeldung und Anmeldeinformationen

Anzeige